论文标题

随机流行模型的线性噪声近似适合部分观察到的发射率计数

A linear noise approximation for stochastic epidemic models fit to partially observed incidence counts

论文作者

Fintzi, Jonathan, Wakefield, Jon, Minin, Vladimir N.

论文摘要

适合发病率数据的随机流行模型(SEM)对于阐明爆发动态,塑造反应策略以及为将来的流行病做准备至关重要。 SEMS通常代表使用Markov跳跃过程(MJP)在离散感染状态下的个体计数,但在计算上是充满挑战性的,因为监视不完美,缺乏主题级别的信息以及数据的时间粗糙,掩盖了真正的流行病。对潜在流行过程的分析整合是不可能的,由于潜在状态空间的维度和离散性,马尔可夫链蒙特卡洛(MCMC)的整合很麻烦。基于仿真的计算方法可以解决MJP可能性的可行性,但对于复杂模型而言,数值易碎且过于昂贵。已经探索了以高斯密度近似MJP过渡密度近似的线性噪声近似(LNA),以分析大型人群设置中的流行率数据,但需要修改以分析发生率计数而不假设数据正常分布。我们演示了如何重新聚集SEMS以适当分析发病率数据,并将LNA折叠成数据增强MCMC框架,该框架以统计学和基于仿真的方法胜过确定性方法,以计算方式。当模型动力学复杂并适用于广泛的SEMS时,我们的框架在计算上是健壮的。我们评估了反映埃博拉病毒,流感和SARS-COV-2动力学的模拟方法,并将我们的方法应用于2013---2015西非埃博拉疫情的国家监视计数。

Stochastic epidemic models (SEMs) fit to incidence data are critical to elucidating outbreak dynamics, shaping response strategies, and preparing for future epidemics. SEMs typically represent counts of individuals in discrete infection states using Markov jump processes (MJPs), but are computationally challenging as imperfect surveillance, lack of subject-level information, and temporal coarseness of the data obscure the true epidemic. Analytic integration over the latent epidemic process is impossible, and integration via Markov chain Monte Carlo (MCMC) is cumbersome due to the dimensionality and discreteness of the latent state space. Simulation-based computational approaches can address the intractability of the MJP likelihood, but are numerically fragile and prohibitively expensive for complex models. A linear noise approximation (LNA) that approximates the MJP transition density with a Gaussian density has been explored for analyzing prevalence data in large-population settings, but requires modification for analyzing incidence counts without assuming that the data are normally distributed. We demonstrate how to reparameterize SEMs to appropriately analyze incidence data, and fold the LNA into a data augmentation MCMC framework that outperforms deterministic methods, statistically, and simulation-based methods, computationally. Our framework is computationally robust when the model dynamics are complex and applies to a broad class of SEMs. We evaluate our method in simulations that reflect Ebola, influenza, and SARS-CoV-2 dynamics, and apply our method to national surveillance counts from the 2013--2015 West Africa Ebola outbreak.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源