论文标题
在毛利山脉制度中,被困玻色子的最佳冷凝速率
Optimal rate of condensation for trapped bosons in the Gross-Pitaevskii regime
论文作者
论文摘要
我们研究了毛ii骨的bose-Einstein冷凝物中的bose气体。我们表明,多体量子系统的基态能量和基态在大粒子数限制中正确地描述了大体量子系统,并提供了最佳的收敛速率。我们的工作将Lieb,Seiringer和Yngvason的先前结果扩展到了领先的订单收敛,以及Boccato,Brennecke,Cenatiempo和Schlein在同质气体上的结果。我们的方法依赖于“完成广场”的想法,这是受Brietzke,Fournais和Solovej在Lee-huang-yang公式上的最新作品的启发,以及Bogoliubov二次汉密尔顿人在Fock空间上的一般估计。
We study the Bose-Einstein condensates of trapped Bose gases in the Gross-Pitaevskii regime. We show that the ground state energy and ground states of the many-body quantum system are correctly described by the Gross-Pitaevskii equation in the large particle number limit, and provide the optimal convergence rate. Our work extends the previous results of Lieb, Seiringer and Yngvason on the leading order convergence, and of Boccato, Brennecke, Cenatiempo and Schlein on the homogeneous gas. Our method relies on the idea of 'completing the square', inspired by recent works of Brietzke, Fournais and Solovej on the Lee-Huang-Yang formula, and a general estimate for Bogoliubov quadratic Hamiltonians on Fock space.