论文标题

传感的储层计算:一种实验方法

Reservoir computing for sensing: an experimental approach

论文作者

Przyczyna, Dawid, Pecqueur, Sébastien, Vuillaume, Dominique, Szaciłowski, Konrad

论文摘要

如果要渗透更多的生活方面,机器学习解决方案的日益普及就会使该领域的限制越来越大。特别是,在便携式医疗设备中,能源效率和操作速度至关重要。储层计算(RC)范式通过其运营的基础来解决这些问题:国家的储层。将输入信息的足够分开转换为储层的内部状态,该连接不需要训练,允许简化读数层,从而显着加速了系统的操作。在这篇简短的评论文章中,首先描述了RC的理论基础,然后描述其单个变体,其发育以及化学传感和计量学中的最新应用:阻抗变化和离子传感的检测。提出的结果表明,储层计算适用于实验感测和验证甜算法的适用性。

The increasing popularity of machine learning solutions puts increasing restrictions on this field if it is to penetrate more aspects of life. In particular, energy efficiency and speed of operation is crucial, inter alia in portable medical devices. The Reservoir Computing (RC) paradigm poses as a solution to these issues through foundation of its operation: the reservoir of states. Adequate separation of input information translated into the internal state of the reservoir, whose connections do not need to be trained, allow to simplify the readout layer thus significantly accelerating the operation of the system. In this brief review article, the theoretical basis of RC was first described, followed by a description of its individual variants, their development and state-of-the-art applications in chemical sensing and metrology: detection of impedance changes and ion sensing. Presented results indicate applicability of reservoir computing for sensing and validating the SWEET algorithm experimentally.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源