论文标题

非负张量分解的加速块坐标下降

Accelerating Block Coordinate Descent for Nonnegative Tensor Factorization

论文作者

Ang, Andersen Man Shun, Cohen, Jeremy E., Gillis, Nicolas, Hien, Le Thi Khanh

论文摘要

本文涉及改善近似非负张量分解(NTF)的块坐标下降算法的经验收敛速度。我们提出了块更新之间的推断策略,称为启发式外推(她)(她)。她显着加速了密集NTF的大多数现有区块坐标算法的经验收敛速度,尤其是针对挑战的计算方案,同时需要可忽略的额外计算预算。

This paper is concerned with improving the empirical convergence speed of block-coordinate descent algorithms for approximate nonnegative tensor factorization (NTF). We propose an extrapolation strategy in-between block updates, referred to as heuristic extrapolation with restarts (HER). HER significantly accelerates the empirical convergence speed of most existing block-coordinate algorithms for dense NTF, in particular for challenging computational scenarios, while requiring a negligible additional computational budget.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源