论文标题

零元通道容量的可变长度编码

Variable-Length Coding for Zero-Error Channel Capacity

论文作者

Charpenay, Nicolas, Treust, Maël Le

论文摘要

零误差通道容量是可以以误差概率完全零达到的最大渐近率,而不是消失的误差概率。这个问题的性质,本质上是组合而非概率,导致了信息理论和组合学方面的各种研究。但是,零错误的容量仍然是一个空旷的问题,例如,带有7个字母的嘈杂类型频道的容量是未知的。在本文中,我们提出了一种基于从发电机集的可变长度单词的串联来构造最佳零错误代码的新方法。正在研究三个零误差可变长度编码方案,称为“可变长度编码”,“相互编码”和“基于自动机的编码”。我们通过线性差方程来表征它们的渐近性能,以发电机集的简单属性,例如特征多项式的根,即邻接矩阵的光谱半径,是发电机系列的收敛半径的倒数。在一个特定的示例中,我们构建了一个“相互融合”的编码方案,该方案渐近地实现了零误差容量。

The zero-error channel capacity is the maximum asymptotic rate that can be reached with error probability exactly zero, instead of a vanishing error probability. The nature of this problem, essentially combinatorial rather than probabilistic, has led to various researches both in Information Theory and Combinatorics. However, the zero-error capacity is still an open problem, for example the capacity of the noisy-typewriter channel with 7 letters is unknown. In this article, we propose a new approach to construct optimal zero-error codes, based on the concatenation of words of variable-length, taken from a generator set. Three zero-error variable-length coding schemes, referred to as "variable-length coding", "intermingled coding" and "automata-based coding", are under study. We characterize their asymptotic performances via linear difference equations, in terms of simple properties of the generator set, e.g. the roots of the characteristic polynomial, the spectral radius of an adjacency matrix, the inverse of the convergence radius of a generator series. For a specific example, we construct an "intermingled" coding scheme that achieves asymptotically the zero-error capacity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源