论文标题
雅各布戒指和格拉德利定理的本地共同学的自以为是
Self-duality of the local cohomology of the Jacobian ring and Gherardelli's Theorem
论文作者
论文摘要
我们证明,在链接理论的背景下,具有隔离奇点的投影性超表面的雅各布戒指的$ 0 $ TH本地共同体具有很好的解释。粗略地说,它代表了Gherardelli定理对相应分级模块的失败的量度。这使我们获得了不同和特征的自由证明其自以为是的证明,事实证明,这是Grothendieck局部二元定理的简单结果。
We prove that the $0$-th local cohomology of the jacobian ring of a projective hypersurface with isolated singularities has a nice interpretation it in the context of linkage theory. Roughly speaking, it represents a measure of the failure of Gherardelli's theorem for the corresponding graded modules. This leads us to a different and characteristic free proof of its self-duality, which turns out to be an easy consequence of Grothendieck's local duality theorem.