论文标题

理论,理论:社会理论在机器学习中的用途

Theory In, Theory Out: The uses of social theory in machine learning for social science

论文作者

Radford, Jason, Joseph, Kenneth

论文摘要

机器学习与社会科学的交集的研究为社会行为提供了关键的新见解。同时,已经提出了各种批评,包括所使用的数据的技术问题以及构建的特征,内置在模型中的有问题的假设,其有限的解释性以及它们对偏见和不平等的贡献。我们认为这些问题主要是因为在模型构建和分析的各个阶段缺乏社会理论。在本文的上半年中,我们介绍了如何使用社会理论来回答机器学习管道每个阶段出现的基本方法论和解释性问题。在下半年,我们展示了如何使用理论评估和比较不同社会学习模型的质量,包括解释,概括和评估模型的公平性。我们认为,本文可以作为计算机和社会科学家的指南,以应对将机器学习工具应用于社交数据所涉及的实质性问题。

Research at the intersection of machine learning and the social sciences has provided critical new insights into social behavior. At the same time, a variety of critiques have been raised ranging from technical issues with the data used and features constructed, problematic assumptions built into models, their limited interpretability, and their contribution to bias and inequality. We argue such issues arise primarily because of the lack of social theory at various stages of the model building and analysis. In the first half of this paper, we walk through how social theory can be used to answer the basic methodological and interpretive questions that arise at each stage of the machine learning pipeline. In the second half, we show how theory can be used to assess and compare the quality of different social learning models, including interpreting, generalizing, and assessing the fairness of models. We believe this paper can act as a guide for computer and social scientists alike to navigate the substantive questions involved in applying the tools of machine learning to social data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源