论文标题

椭圆性分离序列的原始分隔线的一些效率结果

Some effectivity results for primitive divisors of elliptic divisibility sequences

论文作者

Verzobio, Matteo

论文摘要

令$ p $为在数字字段$ k $上定义的椭圆曲线上的一个非扭声点,并考虑$ x(np)$的分母的序列$ \ {b_n \} _ {n \ in \ Mathbb {n}} $。我们证明,$ b_n $的序列的每个学期都有一个原始除数,其$ n $的原始除数比我们将明确计算的有效计算常数大。该常数仅取决于定义曲线的模型。

Let $P$ be a non-torsion point on an elliptic curve defined over a number field $K$ and consider the sequence $\{B_n\}_{n\in \mathbb{N}}$ of the denominators of $x(nP)$. We prove that every term of the sequence of the $B_n$ has a primitive divisor for $n$ greater than an effectively computable constant that we will explicitly compute. This constant will depend only on the model defining the curve.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源