论文标题

通过元学习快速适应超分辨率网络

Fast Adaptation to Super-Resolution Networks via Meta-Learning

论文作者

Park, Seobin, Yoo, Jinsu, Cho, Donghyeon, Kim, Jiwon, Kim, Tae Hyun

论文摘要

传统的监督超分辨率(SR)方法是通过大量外部SR数据集训练的,但无法利用给定的测试图像的理想属性。另一方面,自我监督的SR方法利用了测试图像中的内部信息,但运行时的计算复杂性会受到影响。在这项工作中,我们可以通过实际利用从输入图像中提供的其他信息来进一步改善SISR的性能进一步改善SISR的性能。在训练阶段,我们通过元学习训练网络;因此,网络可以在测试时间快速适应任何输入图像。然后,在测试阶段,仅通过使用给定的低分辨率图像,该元学习网络的参数仅通过几个迭代进行迅速调整。测试时间的适应充分利用了在自然图像中观察到的斑块反射属性。我们的方法有效地处理未知的SR内核,可以应用于任何现有模型。我们证明,所提出的模型无形方法始终提高各种基准SR数据集上常规SR网络的性能。

Conventional supervised super-resolution (SR) approaches are trained with massive external SR datasets but fail to exploit desirable properties of the given test image. On the other hand, self-supervised SR approaches utilize the internal information within a test image but suffer from computational complexity in run-time. In this work, we observe the opportunity for further improvement of the performance of SISR without changing the architecture of conventional SR networks by practically exploiting additional information given from the input image. In the training stage, we train the network via meta-learning; thus, the network can quickly adapt to any input image at test time. Then, in the test stage, parameters of this meta-learned network are rapidly fine-tuned with only a few iterations by only using the given low-resolution image. The adaptation at the test time takes full advantage of patch-recurrence property observed in natural images. Our method effectively handles unknown SR kernels and can be applied to any existing model. We demonstrate that the proposed model-agnostic approach consistently improves the performance of conventional SR networks on various benchmark SR datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源