论文标题
复杂的物理模拟中多余性不确定性传播的广义概率学习方法
A Generalized Probabilistic Learning Approach for Multi-Fidelity Uncertainty Propagation in Complex Physical Simulations
论文作者
论文摘要
不确定性定量方面的两个最重要的挑战与模拟复杂物理模型和随机输入的高维度的高计算成本有关。在实践兴趣的应用中,遇到了这两个问题,并且标准方法失败或不可行。为了克服当前的局限性,我们提出了贝叶斯多保真蒙特卡洛(BMFMC)框架的广义公式,该框架可以利用小型数据制度中的低保真模型版本。我们分析的目的是对高保真模型的完整概率响应进行有效,准确的估计。 BMFMC通过学习参考高保真模型的输出与潜在的几个低保真模型之间的关系来规避维度的诅咒。虽然连续公式在数学上是精确的,并且与低保真模型的精度无关,但我们解决了与小型数据制度相关的挑战(即,只能执行少数50至300个高保真模型运行)。具体来说,我们将配方与一组信息丰富的输入功能相互补充。尽管某些低保真模型提供了一些不准确和嘈杂的信息,但我们证明,对于高随机性维度的不确定性定量问题,可以获得准确且可认证的估计值,而高效率模型的不确定性量化问题要比不可确定的量化方法明显少。我们通过将其应用于具有挑战性的数值示例,例如Navier-Stokes流量模拟和流体结构相互作用问题来说明我们的方法。
Two of the most significant challenges in uncertainty quantification pertain to the high computational cost for simulating complex physical models and the high dimension of the random inputs. In applications of practical interest, both of these problems are encountered, and standard methods either fail or are not feasible. To overcome the current limitations, we present a generalized formulation of a Bayesian multi-fidelity Monte-Carlo (BMFMC) framework that can exploit lower-fidelity model versions in a small data regime. The goal of our analysis is an efficient and accurate estimation of the complete probabilistic response for high-fidelity models. BMFMC circumvents the curse of dimensionality by learning the relationship between the outputs of a reference high-fidelity model and potentially several lower-fidelity models. While the continuous formulation is mathematically exact and independent of the low-fidelity model's accuracy, we address challenges associated with the small data regime (i.e., only a small number of 50 to 300 high-fidelity model runs can be performed). Specifically, we complement the formulation with a set of informative input features at no extra cost. Despite the inaccurate and noisy information that some low-fidelity models provide, we demonstrate that accurate and certifiable estimates for the quantities of interest can be obtained for uncertainty quantification problems in high stochastic dimensions, with significantly fewer high-fidelity model runs than state-of-the-art methods for uncertainty quantification. We illustrate our approach by applying it to challenging numerical examples such as Navier-Stokes flow simulations and fluid-structure interaction problems.