论文标题
大黄蜂重力模型中的Kerr样黑洞对巨大颗粒的有限距离引力偏转
Finite-distance gravitational deflection of massive particles by the Kerr-like black hole in the bumblebee gravity model
论文作者
论文摘要
在本文中,我们研究了Bumblebee Gravity模型中的Kerr样黑洞的相对论巨型颗粒的弱重力偏转角。特别是,我们专注于弱场限制,并在距镜头有限距离的情况下计算接收器和源的挠度角。为此,我们使用由广义雅各比度量定义的二维表面的高斯 - 河网定理。由于存在Bumblebee矢量场,因此时空是渐近的非平板。因此,挠度角进行了修改,可以分为三个部分:高斯曲率的表面积分,粒子射线的地理曲率的路径积分以及坐标角的变化。此外,我们还通过定义挠度角度获得相同的结果。分析了洛伦兹破裂常数对重力镜头的影响。特别是,我们在以前的文献中纠正了一个错误。此外,我们考虑了大颗粒偏转角的有限距离校正。
In this paper, we study the weak gravitational deflection angle of relativistic massive particles by the Kerr-like black hole in the bumblebee gravity model. In particular, we focus on weak field limits and calculate the deflection angle for a receiver and source at a finite distance from the lens. To this end, we use the Gauss-Bonnet theorem of a two-dimensional surface defined by a generalized Jacobi metric. The spacetime is asymptotically non-flat due to the existence of a bumblebee vector field. Thus the deflection angle is modified and can be divided into three parts: the surface integral of the Gaussian curvature, the path integral of a geodesic curvature of the particle ray and the change in the coordinate angle. In addition, we also obtain the same results by defining the deflection angle. The effects of the Lorentz breaking constant on the gravitational lensing are analyzed. In particular, we correct a mistake in the previous literature. Furthermore, we consider the finite-distance correction for the deflection angle of massive particles.