论文标题

单层半导体中的山谷声子和激子复合物

Valley Phonons and Exciton Complexes in a Monolayer Semiconductor

论文作者

He, Minhao, Rivera, Pasqual, Van Tuan, Dinh, Wilson, Nathan P., Yang, Min, Taniguchi, Takashi, Watanabe, Kenji, Yan, Jiaqiang, Mandrus, David G., Yu, Hongyi, Dery, Hanan, Yao, Wang, Xu, Xiaodong

论文摘要

自旋,电荷和晶格自由度之间的耦合在广泛的基本现象中起着重要作用。单层半导体过渡金属二分法剂已成为研究这些耦合效应的出色平台,因为它们具有独特的自旋谷锁定物理,用于托管丰富的激子物种,并减少了较低的库仑相互作用的筛选。在这里,我们报告了多个山谷声子,具有动量向量的声子,指向六角形布里鲁因区的角落以及单层半导体WSE2中产生的激子复合物。从Lande G-Factor和光致发光峰的极化分析中,我们发现这些山谷声子在激子形成和弛豫中均导致了准颗粒的有效间隔散射。这导致了一系列的光致发光峰,作为山谷声子复制品。使用已识别的山谷声子,我们还发现了一个Intervalley激子接近电荷中立性,并提取其短距离电子孔交换相互作用约为10 meV。我们的工作不仅确定了许多以前未知的2D激子物种,而且还表明单层WSE2是研究自旋,伪传和区域边缘声子之间相互作用的主要候选者。

The coupling between spin, charge, and lattice degrees of freedom plays an important role in a wide range of fundamental phenomena. Monolayer semiconducting transitional metal dichalcogenides have emerged as an outstanding platform for studying these coupling effects because they possess unique spin-valley locking physics for hosting rich excitonic species and the reduced screening for strong Coulomb interactions. Here, we report the observation of multiple valley phonons, phonons with momentum vectors pointing to the corners of the hexagonal Brillouin zone, and the resulting exciton complexes in the monolayer semiconductor WSe2. From Lande g-factor and polarization analyses of photoluminescence peaks, we find that these valley phonons lead to efficient intervalley scattering of quasi particles in both exciton formation and relaxation. This leads to a series of photoluminescence peaks as valley phonon replicas of dark trions. Using identified valley phonons, we also uncovered an intervalley exciton near charge neutrality, and extract its short-range electron-hole exchange interaction to be about 10 meV. Our work not only identifies a number of previously unknown 2D excitonic species, but also shows that monolayer WSe2 is a prime candidate for studying interactions between spin, pseudospin, and zone-edge phonons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源