论文标题
关于具有周期性系数的椭圆差分运算符的分解近似值
On resolvent approximations of elliptic differential operators with periodic coefficients
论文作者
论文摘要
我们研究了椭圆差差的非官能接合运算符的分解近似,其周期性系数处于小时的极限。我们分析所涵盖的运算符类别包括具有有界系数的均匀椭圆形家族,以及来自John-Nirenberg Space $ bmo $的无限系数(有界平均振荡)。我们将第一个近似的修改方法与Steklov平滑的使用一起应用。
We study resolvent approximations for elliptic differential nonselfadjoint operators with periodic coefficients in the limit of the small period. The class of operators covered by our analysis includes uniformly elliptic families with bounded coefficients and also with unbounded coefficients from the John-Nirenberg space $BMO$ (bounded mean oscillation). We apply the modified method of the first approximation with the usage of Steklov's smoothing.