论文标题

太阳风与未磁性行星相互作用的弓休克位置的理论研究

Theoretical investigation of the bow shock location for the solar wind interacting with the unmagnetized planet

论文作者

Yeh, I-Lin, Tam, Sunny W. Y., Chang, Po-Yu

论文摘要

研究了火星弓震动,太阳风与未磁化的行星相互作用。从理论上讲,我们研究了太阳能参数,例如太阳风动态压力和太阳能极端紫外线(EUV)通量如何影响弓形冲击位置,而目前尚不清楚。我们介绍了未磁化行星的弓休克鼻子位置的公式。弓形冲击位置,离子局部位置的总和和弓冲击对峙距离是在煤气方法方法中计算的。根据切线不连续性,使用热压连续性(即太阳风热压等于电离层压力)确定了离子地点位置。获得了离子鼻位置的分析公式和鼻子周围的离子剖面。使用经验模型计算僵持距离。我们的派生公式表明,冲击鼻的位置是电离层的尺度高度,太阳风的动态压力和峰值电离层压力的函数。理论模型暗示,冲击鼻的位置对太阳能通量比太阳风力动力学压力更敏感。此外,我们从理论上表明,弓休克位置与太阳风动态压力与负C的功率成正比,其中C大约是电离层尺度的高度与弓震鼻和行星中心之间的距离的比率。该理论与煤气型模拟匹配,并且与Mars Express的航天器测量结果一致[Hall等。 (2016)J。Geophys。 res。太空物理学,121,11,474-11,494]。

Martian bow shocks, the solar wind interacting with an unmagnetized planet, are studied. We theoretically investigated how solar parameters, such as the solar wind dynamic pressure and the solar extreme ultraviolet (EUV) flux, influence the bow shock location, which is still currently not well understood. We present the formula for the location of the bow shock nose of the unmagnetized planet. The bow shock location, the sum of the ionopause location and bow shock standoff distance, is calculated in the gasdynamics approach. The ionopause location is determined using thermal pressure continuity, i.e., the solar wind thermal pressure equal to the ionospheric pressure, according to tangential discontinuity. The analytical formula of the ionopause nose location and the ionopause profile around the nose are obtained. The standoff distance is calculated using the empirical model. Our derived formula shows that the shock nose location is a function of the scale height of ionosphere, the dynamic pressure of the solar wind and the peak ionospheric pressure. The theoretical model implies that the shock nose location is more sensitive to the solar EUV flux than solar wind dynamics pressure. Further, we theoretically show that the bow shock location is proportional to the solar wind dynamic pressure to the power of negative C, where C is about the ratio of the ionospheric scale height to the distance between bow shock nose and the planet center. This theory matches the gasdynamics simulation and is consistent with the spacecraft measurement result by Mars Express [Hall, et al. (2016) J. Geophys. Res. Space Physics, 121, 11,474-11,494].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源