论文标题

c* - 组束扩展的代数

C*-Algebras of extensions of groupoids by group bundles

论文作者

Ionescu, Marius, Kumjian, Alex, Renault, Jean N., Sims, Aidan, Williams, Dana P.

论文摘要

给定一个普通的亚组捆绑$ \ MATHCAL $ s groupoid $σ$的同位素捆绑包,我们在组$ c^*$ - 代数 - 由$ \ \ \ \ \ \ \ \ \ \ \ $ \ \ crossed产品的twist crossed $ c $ c^$ c^$ c^*$ c^*$ c^*$ C^*Alge的$ c^*$ - 代数上的商组$σ/\ mathcal的扭曲动作(限制了$ \ mathcal a $是Abelian的情况,我们将$ C^*(σ)$描述为$ C^*$ - 代数与$ \ Mathbf t $ groupoid相关的代数,而不是从$σ/\ Mathcal a $ pontranical Action of the pontranformation groups of the the themalformation gropsoid a $。我们给出了一些说明性的例子。

Given a normal subgroup bundle $\mathcal A$ of the isotropy bundle of a groupoid $Σ$, we obtain a twisted action of the quotient groupoid $Σ/\mathcal A$ on the bundle of group $C^*$-algebras determined by $\mathcal A$ whose twisted crossed product recovers the groupoid $C^*$-algebra $C^*(Σ)$. Restricting to the case where $\mathcal A$ is abelian, we describe $C^*(Σ)$ as the $C^*$-algebra associated to a $\mathbf T$-groupoid over the tranformation groupoid obtained from the canonical action of $Σ/\mathcal A$ on the Pontryagin dual space of $\mathcal A$. We give some illustrative examples of this result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源