论文标题
农业视频:用于农业模式分析的大型航空图像数据库
Agriculture-Vision: A Large Aerial Image Database for Agricultural Pattern Analysis
论文作者
论文摘要
深度学习在视觉识别任务中的成功促进了多个研究领域的进步。特别是,越来越多的关注被引起了其在农业中的应用。然而,尽管在农田上的视觉模式识别具有巨大的经济价值,但由于缺乏合适的农业图像数据集,几乎没有取得任何进展来合并计算机视觉和作物科学。同时,农业问题在计算机视觉中也带来了新的挑战。例如,对空中农田图像的语义分割需要对具有极端注释稀疏性的极尺寸图像进行推断。这些挑战在大多数常见对象数据集中都不存在,我们表明它们比许多其他航空图像数据集更具挑战性。为了鼓励农业计算机愿景研究,我们提出农业视频:一种大规模的空中农田图像数据集,用于农业模式的语义细分。我们收集了来自美国3,432个农田的94,986个高质量的空中图像,每个图像由RGB和近红外(NIR)通道组成,分辨率高达每像素10 cm。我们注释了九种对农民最重要的野外异常模式。作为对空中农业语义分割的试点研究,我们使用流行的语义分割模型进行了全面的实验。我们还提出了一个用于空中农业模式识别的有效模型。我们的实验表明,对计算机愿景和农业社区构成了一些挑战。该数据集的未来版本将包括更多的航空图像,异常模式和图像频道。更多信息,请访问https://www.arcriculture-vision.com。
The success of deep learning in visual recognition tasks has driven advancements in multiple fields of research. Particularly, increasing attention has been drawn towards its application in agriculture. Nevertheless, while visual pattern recognition on farmlands carries enormous economic values, little progress has been made to merge computer vision and crop sciences due to the lack of suitable agricultural image datasets. Meanwhile, problems in agriculture also pose new challenges in computer vision. For example, semantic segmentation of aerial farmland images requires inference over extremely large-size images with extreme annotation sparsity. These challenges are not present in most of the common object datasets, and we show that they are more challenging than many other aerial image datasets. To encourage research in computer vision for agriculture, we present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns. We collected 94,986 high-quality aerial images from 3,432 farmlands across the US, where each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel. We annotate nine types of field anomaly patterns that are most important to farmers. As a pilot study of aerial agricultural semantic segmentation, we perform comprehensive experiments using popular semantic segmentation models; we also propose an effective model designed for aerial agricultural pattern recognition. Our experiments demonstrate several challenges Agriculture-Vision poses to both the computer vision and agriculture communities. Future versions of this dataset will include even more aerial images, anomaly patterns and image channels. More information at https://www.agriculture-vision.com.