论文标题

精确恢复高斯混合模型的截止

Cutoff for exact recovery of Gaussian mixture models

论文作者

Chen, Xiaohui, Yang, Yun

论文摘要

我们确定了群集中心分离的信息理论截止值,以精确恢复$ k $ - 组成的高斯混合模型,具有相等的群集大小。此外,我们表明,$ k $ -MEANS聚类方法的半决赛编程(SDP)放松达到了如此尖锐的阈值,以确切恢复,而无需假设集群中心的对称性。

We determine the information-theoretic cutoff value on separation of cluster centers for exact recovery of cluster labels in a $K$-component Gaussian mixture model with equal cluster sizes. Moreover, we show that a semidefinite programming (SDP) relaxation of the $K$-means clustering method achieves such sharp threshold for exact recovery without assuming the symmetry of cluster centers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源