论文标题
具有给定的零集
Convolution Idempotents with a given Zero-set
论文作者
论文摘要
我们研究了在给定的一组索引上消失的满足H*H = H的N长度离散信号的结构。我们从采样,fuglede的猜想和带有限制性信号的正交插值的示例中激发了这个问题。当n是质量功率时,我们将所有此类H的表征用规定的零设置,以h的逆DFT中的非零索引的数字扩展。
We investigate the structure of N-length discrete signals h satisfying h*h=h that vanish on a given set of indices. We motivate this problem from examples in sampling, Fuglede's conjecture, and orthogonal interpolation of bandlimited signals. When N is a prime power, we characterize all such h with a prescribed zero set in terms of digit expansions of nonzero indices in the inverse DFT of h.