论文标题
没有某些周期的平面图的DP-3色彩
DP-3-coloring of planar graphs without certain cycles
论文作者
论文摘要
DP颜色是列表着色的概括,该列表是由Dvočhk和Postle引入的[J. [J.组合。理论ser。 B 129(2018)38--54]。张[信息。过程。 Lett。 113(9)(2013)354--356]表明,每个平面图都不相邻三角形,也不是5-,6-,9个循环3-偶然。刘等。 [离散数学。 342(2019)178--189]表明,每个没有4-,5-,6和9个周期的平面图都是可dp-3的。在本文中,我们表明每个平面图都不具有相邻三角形,也不是5-,6-,9个周期的dp-3可选,这概括了这些结果。 Yu等。通过表明(i)具有至少三角形距离的每个平面图,给出了三个波尔多类型的结果,至少三角形和无4-,5个循环是DP-3上色的; (ii)每个平面图至少两个和无4-,5-,6个周期的距离dp-3可选; (iii)每个平面图至少两个和5个,6-,7个周期的三角形距离都是可dp-3的。在最后一节中,我们还给出了两个波尔多型的结果:(i)每个平面图在距离小于两个的5-,6-,8个循环和三角形都不是DP-3上色的; (ii)每个平面图在距离小于两个的距离时都不是4-,5-,7个骑士和三角形的图形。
DP-coloring is a generalization of list coloring, which was introduced by Dvořák and Postle [J. Combin. Theory Ser. B 129 (2018) 38--54]. Zhang [Inform. Process. Lett. 113 (9) (2013) 354--356] showed that every planar graph with neither adjacent triangles nor 5-, 6-, 9-cycles is 3-choosable. Liu et al. [Discrete Math. 342 (2019) 178--189] showed that every planar graph without 4-, 5-, 6- and 9-cycles is DP-3-colorable. In this paper, we show that every planar graph with neither adjacent triangles nor 5-, 6-, 9-cycles is DP-3-colorable, which generalizes these results. Yu et al. gave three Bordeaux-type results by showing that (i) every planar graph with the distance of triangles at least three and no 4-, 5-cycles is DP-3-colorable; (ii) every planar graph with the distance of triangles at least two and no 4-, 5-, 6-cycles is DP-3-colorable; (iii) every planar graph with the distance of triangles at least two and no 5-, 6-, 7-cycles is DP-3-colorable. We also give two Bordeaux-type results in the last section: (i) every plane graph with neither 5-, 6-, 8-cycles nor triangles at distance less than two is DP-3-colorable; (ii) every plane graph with neither 4-, 5-, 7-cycles nor triangles at distance less than two is DP-3-colorable.