论文标题

在充气伯努利网中最长运行的渐近收敛率

Asymptotic convergence rate of the longest run in an inflating Bernoulli net

论文作者

Ni, Kai, Cao, Shanshan, Huo, Xiaoming

论文摘要

在图像检测中,一个问题是测试该集合是否主要由均匀分散的点组成,但还包含从某些(先验未知)曲线采样的一小部分点,例如,曲线具有$ c^α$ -NORM,限制为$β$。一种方法是通过计算多尺度多肌动物条中的成员资格来分析数据,该算法涉及一种算法,该算法深入到连接许多连续的“重要”节点的路径长度。在本文中,我们开发了该算法的数学形式主义,并分析了最长的显着运行时间长度的统计特性。收敛速率得出。使用渗透理论和随机图理论,我们提出了一种名为伪树模型的新型概率模型。基于伪树模型的渐近结果,我们进一步研究了“膨胀”伯努利净净值中最长的显着运行的长度。我们发现,有意义节点的概率参数$ p $起着重要的作用:有一个阈值$ p_c $,因此在$ p <p_c $和$ p> p_c $的情况下,观察到了重要长度的渐近行为。我们将结果应用于检测潜在的曲线特征,并认为我们在理论上达到了最低的可检测强度。

In image detection, one problem is to test whether the set, though mostly consisting of uniformly scattered points, also contains a small fraction of points sampled from some (a priori unknown) curve, for example, a curve with $C^α$-norm bounded by $β$. One approach is to analyze the data by counting membership in multiscale multianisotropic strips, which involves an algorithm that delves into the length of the path connecting many consecutive "significant" nodes. In this paper, we develop the mathematical formalism of this algorithm and analyze the statistical property of the length of the longest significant run. The rate of convergence is derived. Using percolation theory and random graph theory, we present a novel probabilistic model named pseudo-tree model. Based on the asymptotic results for pseudo-tree model, we further study the length of the longest significant run in an "inflating" Bernoulli net. We find that the probability parameter $p$ of significant node plays an important role: there is a threshold $p_c$, such that in the cases of $p<p_c$ and $p>p_c$, very different asymptotic behaviors of the length of the significant are observed. We apply our results to the detection of an underlying curvilinear feature and argue that we achieve the lowest possible detectable strength in theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源